ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 1450 от 25.11.2015 г.)

Преобразователи измерительные с интеллектуальными сенсорными модулями серий А200, А300, В300 и С300

Назначение средства измерений

Преобразователи измерительные с интеллектуальными сенсорными модулями серий A200, A300, B300 и C300 предназначены для измерений и передачи в цифровой форме результатов измерений:

- объемной доли кислорода (O_2) , водорода (H_2) , диоксида углерода (CO_2) ;
- массовой концентрации оксида углерода (CO), сероводорода (H_2S), хлористого водорода (HCl), аммиака (NH₃), хлора (Cl₂), диоксида азота (NO₂), диоксида серы (SO₂), фосгена (COCl₂), синильной кислоты (HCN), фосфина (PH₃), паров органических веществ;
 - довзрывоопасных концентраций горючих газов и паров.

Описание средства измерений

Преобразователи измерительные с интеллектуальными сенсорными модулями серий A200, A300, B300 и C300 (далее – ИП) представляют собой автоматические одноканальные измерительные приборы непрерывного действия.

Принцип действия:

- ИП объемной доли водорода, кислорода, массовой концентрации оксида углерода, сероводорода, диоксида азота, диоксида серы, хлористого водорода, аммиака, хлора, фосгена, синильной кислоты, фосфина электрохимический (ЭХ),
- ИП довзрывоопасных концентраций горючих газов и паров термокаталитический (ТК) или оптико-абсорбционный (ОА);
 - ИП массовой концентраций паров органических веществ фотоионизационный (ФИ);
 - ИП объёмной доли диоксида углерода оптико-абсорбционный (ОА);

Конструктивно ИП выполнены одноблочными в пластиковом или металлическом корпусе и состоят из следующих модулей:

- модуль сенсорный интеллектуальный ИСМ-4Т (ИСМ);
- модуль вторичный.

ИП исполнений:

- A200 ... A221, A300 ... A330, B300 ...B330 имеют аналоговый выходной сигнал (4-20) мА,
- C300 ... C330 имеют аналоговый выходной сигнал (4-20) мА и дискретные выходные сигналы ("порог 1", "порог 2", "отказ").

ИП всех исполнений имеют светодиод, сигнализирующий о режимах работы («норма», «порог 1", "порог 2", "отказ").

Обозначения, наименования ИП, диапазоны измерений и маркировка взрывозащиты приведены в таблице 1.

Способ забора пробы - диффузионный.

Обозначения, наименования ИП, диапазоны измерений и маркировка взрывозащиты приведены в таблице 1.

Таблица 1 - Исполнения ИП

1аолица 1 - Испо	пнения ипт	<u> </u>	 	<u> </u>
Наименование	Наименование ус-	TT 0	Диапазон из-	Маркировка взры-
преобразователя	тановленной ИСМ	Измеряемый газ	мерений	возащиты
измерительного			_	
A200	ИСМ-H2S1.0	Сероводород	0-20 мг/м ³	1ExibIICT6
A201	ИСМ-H2S2.0	Сероводород	0-50 мг/м ³	1ExibIICT6
A203	ИСМ-NH3 1.0	Аммиак	0-100 мг/м ³	1ExibIICT6
A204	ИСМ-NH3 2.0	Аммиак	0-2000 мг/м ³	1ExibIICT6
A205	ИСМ-NH3 3.0	Аммиак	0-600 мг/м ³	1ExibIICT6
A206	ИСМ-NH3 4.0	Аммиак	0-200 мг/м ³	1ExibIICT6
A207	ИСМ-C12 1.0	Хлор	0 -6 мг/м 3	1ExibIICT6
A208	ИСМ-С12 2.0	Хлор	0-50 мг/м ³	1ExibIICT6
A209	ИСМ-С12 3.0	Хлор	$0-30 \text{ мг/м}^3$	1ExibIICT6
A210	ИСМ-HCl 1.0	Хлористый	0-10 мг/м ³	1ExibIICT6
		водород		
A211	ИСМ-C0 1.0	Оксид углерода	$0-100 \text{ мг/м}^3$	1ExibIICT6
A212	ИСМ-С0 2.0	Оксид углерода	$0-1000 \text{ мг/м}^3$	1ExibIICT6
A213	ИСМ-NO2 1.0	Диоксид азота	0-20 мг/м ³	1ExibIICT6
A214	ИСМ-NO2 2.0	Диоксид азота	$0-50 \text{ мг/м}^3$	1ExibIICT6
A215	ИСМ-SO2 1.0	Диоксид серы	0-35 мг/м ³	1ExibIICT6
A216	ИСМ-SO2 2.0	Диоксид серы	0-100 мг/м ³	1ExibIICT6
A217	ИСМ-COCL2 1.0	Фосген	0-5 мг/м ³	1ExibIICT6
A218	ИСМ-HCN 1.0	Синильная	0-15 мг/м ³	1ExibIICT6
11210		кислота	0 10 111/11	TEMOTIC TO
A219	ИСМ-О2	Кислород	0-30% (об.д.)	1ExibIICT6
A220	ИСМ-Н2	Водород	0-2% (об.д.)	1ExibIICT6
A221	ИСМ-РНЗ 1.0	Фосфин	0-10 мг/м ³	1ExibIICT6
A300	ИСМ-H2S1.0	Сероводород	0-20 мг/м ³	1ExibIICT6
A301	ИСМ-H2S2.0	Сероводород	$0-50 \text{ M}\Gamma/\text{M}^3$	1ExibIICT6
A303	ИСМ-NH3 1.0	Аммиак	$0-100 \text{ M}\Gamma/\text{M}^3$	1ExibIICT6
A304	ИСМ-NH3 2.0	Аммиак	0-2000 мг/м ³	1ExibIICT6
A305	ИСМ-NH3 3.0	Аммиак	0-2000 мг/м ³	1ExibIICT6
A306	ИСМ-NH3 4.0	Аммиак	0-000 мг/м 0-200 мг/м ³	1ExibIICT6
A307	ИСМ-N13 4.0 ИСМ-Cl2 1.0	Хлор	0-200 MI/M 0-6 MГ/M ³	1ExibIICT6
A308	ИСМ-C12 1.0 ИСМ-C12 2.0	1	0-6 MГ/M 0-50 МГ/M ³	1ExibIICT6
		Хлор		
A309	ИСМ-C12 3.0	Хлор	0-30 мг/м ³	1ExibIICT6
A310	ИСМ-HCl 1.0	Хлористый	$0-10 \text{ мг/м}^3$	1ExibIICT6
A 2.1.1	HCM CO 1 O	водород	0.100 / 3	1E 1 HOTE
A311	ИСМ-С0 1.0	Оксид углерода	0-100 мг/м ³	1ExibIICT6
A312	ИСМ-С0 2.0	Оксид углерода	0-1000 мг/м ³	1ExibIICT6
A313	ИСМ-NO2 1.0	Диоксид азота	0-20 мг/м ³	1ExibIICT6
A314	ИСМ-NO2 2.0	Диоксид азота	0-50 мг/м ³	1ExibIICT6
A315	ИСМ-SO2 1.0	Диоксид серы	0-35 мг/м ³	1ExibIICT6
A316	ИСМ-SO2 2.0	Диоксид серы	0-100 мг/м ³	1ExibIICT6
A317	ИСM-COCL2 1.0	Фосген	0-5 мг/м ³	1ExibIICT6
A318	ИСМ-HCN 1.0	Синильная	$0-15 \text{ мг/м}^3$	1ExibIICT6
		кислота		
A319	ИСМ-О2	Кислород	0-30% (об.д.)	1ExibIICT6
A320	ИСМ-Н2	Водород	0-2% (об.д.)	1ExibIICT6

Наименование	Harricanapanna		Путажаралу уга	Management
преобразователя	Наименование установленной ИСМ	Измеряемый газ	Диапазон из-	Маркировка взры-
измерительного	тановленной истуг		мерений	возащиты
A324	ИСМ-CnHm-tk	Горючие газы и	0-50% НКПР	1ExdibIICT6
		пары		
A325	ИСМ-РНЗ 1.0	Фосфин	$0-10 \text{ мг/м}^3$	1ExibIICT6
A326	ИСМ-CnHm-oa	Горючие газы и	0-100% НКПР	1ExibIICT6
		пары		
A327	ИCM-PID 1.0	Органич. в-ва	$0-20 \text{ мг/м}^3$	1ExibIICT6
A328	ИСM-PID 2.0	Органич. в-ва	$0-200 \text{ мг/м}^3$	1ExibIICT6
A329	ИСM-PID 3.0	Органич. в-ва	$0-2000 \text{ мг/м}^3$	1ExibIICT6
A330	ИСМ-СО2	Диоксид углерода	0-5% (об.д.)	1ExibIICT6
B300	ИСМ-H2S1.0	Сероводород	$0-20 \text{ мг/м}^3$	1ExibIICT6
B301	ИСМ-H2S2.0	Сероводород	$0-50 \text{ мг/м}^3$	1ExibIICT6
B303	ИСМ-NH3 1.0	Аммиак	$0-100 \text{ мг/м}^3$	1ExibIICT6
B304	ИСМ-NH3 2.0	Аммиак	$0-2000 \text{ мг/м}^3$	1ExibIICT6
B305	ИСМ-NH3 3.0	Аммиак	$0-600 \text{ мг/м}^3$	1ExibIICT6
B306	ИСМ-NH3 4.0	Аммиак	$0-200 \text{ мг/м}^3$	1ExibIICT6
B307	ИСМ-С12 1.0	Хлор	0-6 мг/м ³	1ExibIICT6
B308	ИСМ-С12 2.0	Хлор	$0-50 \text{ мг/м}^3$	1ExibIICT6
B309	ИСМ-С12 3.0	Хлор	$0-30 \text{ мг/м}^3$	1ExibIICT6
B310	ИСМ-НС1 1.0	Хлористый водо-	$0-10 \text{ мг/м}^3$	1ExibIICT6
		род		
B311	ИСМ-С0 1.0	Оксид углерода	$0-100 \text{ мг/м}^3$	1ExibIICT6
B312	ИСМ-С0 2.0	Оксид углерода	$0-1000 \text{ мг/м}^3$	1ExibIICT6
B313	ИСМ-NO2 1.0	Диоксид азота	$0-20 \text{ мг/м}^3$	1ExibIICT6
B314	ИСМ-NO2 2.0	Диоксид азота	$0-50 \text{ мг/м}^3$	1ExibIICT6
B315	ИСМ-SO2 1.0	Диоксид серы	$0-35 \text{ мг/м}^3$	1ExibIICT6
B316	ИСМ-SO2 2.0	Диоксид серы	$0-100 \text{ мг/м}^3$	1ExibIICT6
B317	ИСМ-COCL2 1.0	Фосген	$0-5 \text{ мг/м}^3$	1ExibIICT6
B318	ИСМ-НСN 1.0	Синильная	$0-15 \text{ мг/м}^3$	1ExibIICT6
		кислота		
B319	ИСМ-О2	Кислород	0-30% (об.д.)	1ExibIICT6
B320	ИСМ-Н2	Водород	0-2% (об.д.)	1ExibIICT6
B324	ИСМ-СпНт-tk	Горючие газы и	0-50% НКПР	1ExdibIICT6
		пары		
B325	ИСМ-РНЗ 1.0	Фосфин	$0-10 \text{ мг/м}^3$	1ExibIICT6
B326	ИСМ-СпНт-oa	Горючие газы и	0-100% НКПР	1ExibIICT6
		пары		
B327	ИСМ-PID 1.0	Органич. в-ва	$0-20 \text{ мг/м}^3$	1ExibIICT6
B328	ИСМ-PID 2.0	Органич. в-ва	$0-200 \text{ мг/м}^3$	1ExibIICT6
B329	ИСМ-PID 3.0	Органич. в-ва	$0-2000 \text{ мг/м}^3$	1ExibIICT6
B330	ИСМ-СО2	Диоксид углерода	0-5% (об.д.)	1ExibIICT6
C300	ИСМ-H2S1.0	Сероводород	0-20 мг/м ³	1ExibIICT6
C301	ИСМ-H2S2.0	Сероводород	0-50 мг/м ³	1ExibIICT6
C303	ИСМ-NH3 1.0	Аммиак	$0-100 \text{ M}\Gamma/\text{M}^3$	1ExibIICT6
C304	ИСМ-NH3 2.0	Аммиак	$0-2000 \text{ мг/м}^3$	1ExibIICT6
C305	ИСМ-NH3 3.0	Аммиак	0-600 мг/м ³	1ExibIICT6
C306	ИСМ-NH3 4.0	Аммиак	0-200 мг/м ³	1ExibIICT6

Наименование преобразователя измерительного	Наименование установленной ИСМ	Измеряемый газ	Диапазон из- мерений	Маркировка взры- возащиты
C307	ИСМ-Cl2 1.0	Хлор	0-6 мг/м ³	1ExibIICT6
C308	ИСМ-C12 2.0	Хлор	$0-50 \text{ мг/м}^3$	1ExibIICT6
C309	ИСМ-C12 3.0	Хлор	$0-30 \text{ мг/м}^3$	1ExibIICT6
C310	ИСМ-НСІ 1.0	Хлористый водород	0-10 мг/м ³	1ExibIICT6
C311	ИСМ-С0 1.0	Оксид углерода	$0-100 \text{ мг/м}^3$	1ExibIICT6
C312	ИСМ-С0 2.0	Оксид углерода	$0-1000 \text{ мг/м}^3$	1ExibIICT6
C313	ИСМ-NO2 1.0	Диоксид азота	$0-20 \text{ мг/м}^3$	1ExibIICT6
C314	ИСМ-NO2 2.0	Диоксид азота	$0-50 \text{ мг/м}^3$	1ExibIICT6
C315	ИСМ-SO2 1.0	Диоксид серы	0-35 мг/м ³	1ExibIICT6
C316	ИСМ-SO2 2.0	Диоксид серы	$0-100 \text{ мг/м}^3$	1ExibIICT6
C317	ИСМ-COCL2 1.0	Фосген	0-5 мг/м ³	1ExibIICT6
C318	ИСМ-HCN 1.0	Синильная	0-15 мг/м ³	1ExibIICT6
		кислота		
C319	ИСМ-О2	Кислород	0-30% (об.д.)	1ExibIICT6
C320	ИСМ-Н2	Водород	0-2% (об.д.)	1ExibIICT6
C324	ИСМ-СпНт-tk	Горючие газы и пары	0-50% НКПР	1ExdibIICT6
C325	ИСМ-РНЗ 1.0	Фосфин	$0-10 \text{ мг/м}^3$	1ExibIICT6
C326	ИСМ-СпНт-oa	Горючие газы и	0-100% НКПР	1ExibIICT6
		пары	_	
C327	ИСM-PID 1.0	Органич. в-ва	$0-20 \text{ мг/м}^3$	1ExibIICT6
C328	ИСМ-PID 2.0	Органич. в-ва	$0-200 \text{ мг/м}^3$	1ExibIICT6
C329	ИСM-PID 3.0	Органич. в-ва	$0-2000 \text{ мг/м}^3$	1ExibIICT6
C330	ИСМ-СО2	Диоксид углерода	0-5% (об.д.)	1ExibIICT6

ИП соответствуют ГОСТ Р 51330.0-99 (МЭК 60079-0-98), ГОСТ 30852.0-2002 (МЭК 60079-0:1998); ГОСТ Р 51330.1-99 (МЭК 60079-1-98), ГОСТ 30852.1-2002 (МЭК 60079-1:1998), ГОСТ Р 51330.10-99 (МЭК 60079-11-99), ГОСТ 30852.10-2002 (МЭК 60079-11:1999), имеют маркировку взрывозащиты «1ExibIICT6», «1ExdibIICT6».

Виды взрывозащиты ИП:

- «взрывонепроницаемая оболочка» (d) по ГОСТ ГОСТ Р 51330.1-99 (МЭК 60079-1-98), ГОСТ 30852.1-2002 (МЭК 60079-1:1998);
- «искробезопасная электрическая цепь» (ib) по ГОСТ Р 51330.10-99 (МЭК 60079-11-99), ГОСТ 30852.10-2002 (МЭК 60079-11:1999).

В соответствии с ГОСТ Р 52931-2008 ИП является взрывозащищенным электрическим изделием третьего порядка, предназначенным для информационной связи с другими изделиями.

По устойчивости к воздействию климатических факторов ИП соответствуют исполнению Д3 по ГОСТ Р 52931-2008.

Внешний вид ИП представлен на рисунках 1 и 2.

Рисунок 1 – ИП серий А200, А300, внешний вид

Рисунок 2 – ИП серий В300, С300 внешний вид

Программное обеспечение

Преобразователи измерительные с интеллектуальными сенсорными модулями серий A200, A300, B300 и C300 имеют встроенное программное обеспечение, разработанное изготовителем специально для решения задач измерения содержания определяемых компонентов в воздухе рабочей зоны.

Программное обеспечение разработано изготовителем специально для решения задач измерения содержания определяемых компонентов в воздухе рабочей зоны.

ПО ИП имеет следующую структуру:

- модуль приема и обработки цифровых данных от ИСМ;
- модуль расчета выходного тока;
- модуль управления светодиодами и звуковым сигнализатором;
- модуль управления реле;
- модуль хранения констант.

ПО ИП выполняет следующие функции:

- прием и обработку измерительной информации от ИСМ;
- формирование выходного аналогового (все исполнения) и дискретных (только исполнения C300 ... C330);
 - диагностика состояния аппаратной части ИП.

Идентификационные данные программного обеспечения приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО

				Алгоритм
		Номер вер-		вычисле-
	Идентифи-	сии (иден-		ния циф-
Наименование	кационное	тификаци-	Цифровой идентификатор про-	рового
	наименова-	онный но-	Цифровой идентификатор про- граммного обеспечения (контроль-	иденти-
программного обеспечения	ние про-	мер) про-	ная сумма исполняемого кода)	фикатора
Оосспечения	граммного	граммного	ная сумма исполняемого кода)	про-
	обеспечения	обеспече-		граммно-
		ния		го обес-
				печения
inkram_smc	inkram_smc	v.1.0.1.11	7b846451fd6910f6f0f21c41bfc82188	MD5
Примечание - но	мер версии ПО	должен быть н	е ниже указанного в таблице.	

Влияние встроенного программного обеспечения ИП учтено при нормировании метрологических характеристик.

ИП имеют защиту встроенного программного обеспечения от преднамеренных или непреднамеренных изменений. Уровень защиты «А» по МИ 3286-2010.

Метрологические и технические характеристики

1) Диапазоны измерений и пределы допускаемой основной абсолютной погрешности ИП приведены в таблице 3.

Таблица 3 - Диапазоны измерений и пределы допускаемой основной погрешности ИП

				новнои погрешности ИІ	
Обозначение ус-	Единица	Диапазон	Диапазон из-	Пределы допускае-	Цена
тановленной	измере-	показаний	мерений	мой основной абсо-	единицы
ИСМ-4Т(ИСМ)	ний			лютной погрешности	наи-
				(Dд)	меньшего
HCM Callanda 1)		0-00	0-0-50	. 5	разряда
ИСМ-CnHm-tk 1)	0/ 111/110	От 0 до 60	От 0 до 50	± 5	0,1
ИСМ-CnHm-oa ²⁾	% НКПР	От 0 до 100	От 0 до 50	±5	1
HCM O2		0 0 20	Св. 50 до 100	$\pm (5 + 0.1 (C_{BX}-50))$	0.1
ИСМ-О2	объемная	От 0 до 30	От 0 до 30	± 0,9	0,1
ИСМ-Н2	доля, %	От 0 до 2	От 0 до 2	± 0,2	0,1
ИСМ-СО2	, , ,	От 0 до 5	От 0 до 5	$\pm (0,1+0,15C_{BX})$	0,1
ИСМ-СО 1.0	$M\Gamma/M^3$	От 0 до 100	От 0 до 20	± 4	0,1
2)	1411 / 141		Св. 20 до 100	$\pm (4 + 0.2(C_{BX}-20))$	0,1
ИСМ-CO 2.0 ³⁾	2	От 0 до 1000	От 0 до 200	± 40	
	$M\Gamma/M^3$		Св. 200 до	$\pm (40 + 0.2(C_{BX}-200))$	1
			1000		
ИСМ-Cl2 1.0	мг/м ³	От 0 до 6	От 0 до 1	± 0,2	0,1
20	1411 / 141		Св. 1 до 6	$\pm (0.2 + 0.2(C_{BX}-1))$	0,1
ИСМ-Cl2 2.0 ³⁾	$M\Gamma/M^3$	От 0 до 50	От 0 до 10	± 2	0.1
	1411 / 141		Св. 10 до 50	$\pm (2 + 0.2(C_{BX}-10))$	0.1
ИСМ-C12 3.0 ³⁾	мг/м³	От 0 до 30	От 0 до 6	±1,2	0,1
	IVII / IVI		Св. 6 до 30	$\pm (1,2 + 0,2(C_{BX}-6))$	0,1
ИСМ-NH3 1.0	мг/м ³	От 0 до 100	От 0 до 20	± 4	0.1
	M17M		Св. 20 до 100	$\pm (4 + 0.2(C_{BX}-20))$	0,1
ИСМ-NH3 2.0 ³⁾		От 0 до 2000	От 0 до 400	± 80	
	$M\Gamma/M^3$		Св. 400 до	$\pm (80 + 0.2(C_{BX}-400))$	1
			2000	, , , , === //	
ИСМ-NH3 3.0 ³⁾		От 0 до 600	От 0 до 120	±20	
	$M\Gamma/M^3$		Св. 120 до	$\pm (20+0,2(C_{BX}-120))$	1
			600	_(= v · v,=(= BX == v))	
ИСМ-NH3 4.0	мг/м ³	От 0 до 200	От 0 до 20	± 5	0.1
	MΓ/M		Св. 20 до 200	$\pm (5 + 0.20(C_{BX}-20))$	0,1
ИСМ-H2S 1.0	, 3	От 0 до 20	От 0 до 3	± 0,6	0.1
	$M\Gamma/M^3$		Св. 3 до 20	$\pm (0.6 + 0.2(C_{BX}-3))$	0,1
ИСМ-H2S 2.0	_ / 3	От 0 до 50	От 0 до 10	± 2	0.1
	мг/м ³		Св. 10 до 50	$\pm (2 + 0.2(C_{BX}-10))$	0,1
ИСМ-НСІ 1.0	_ / 3	От 0 до 10	От 0 до 3	± 1	0.1
	мг/м ³		Св. 3 до 10	$\pm (1 + 0.2(C_{BX}-3))$	0,1
ИСМ-NO2 1.0	, 3	От 0 до 20	От 0 до 5	±1	0.1
	мг/м ³	, ,	Св. 3 до 20	$\pm (1 + 0.2(C_{BX}-5))$	0,1
ИСМ-NO2 2.0	2	От 0 до 50	От 0 до 10	±2	_
	мг/м ³	210 40 50	Св. 10 до 50	$\pm (2 + 0.2(C_{BX}-10))$	0,1
ИСМ-SO2 1.0	2	От 0 до 35	От 0 до 6	± 1.2	
110111 502 1.0	$M\Gamma/M^3$	от о до 33	Св. 6 до 35	$\pm (1.2 + 0.2(C_{BX}-6))$	0,1
ИСМ-SO2 2.0 ³⁾		От 0 до 100	От 0 до 20	$\pm (1.2 + 0.2(C_{BX}-0))$ ± 4	
r1C1V1-SO2 2.U	$M\Gamma/M^3$	ОТОДОТОО			0,1
HCM COCL 2.1.0		Om 0 mg 15	Св. 20 до 100	$\pm (4 + 0.2(C_{BX}-20))$	
ИСМ-COCL2 1.0	$M\Gamma/M^3$	От 0 до 15	От 0 до 1	±0,3	0,1
			Св. 1 до 5	$\pm (0.3 + 0.25(C_{BX}-1))$	

Обозначение ус-	Единица	Диапазон	Диапазон из-	Пределы допускае-	Цена
тановленной	измере-	показаний	мерений	мой основной абсо-	единицы
ИСМ-4Т(ИСМ)	ний			лютной погрешности	наи-
				(Dд)	меньшего
					разряда
ИСМ-HCN 1.0	$M\Gamma/M^3$	От 0 до 30	От 0 до 3	±0,6	0,1
	N11 / N1		Св. 3 до 15	$\pm (0.6 + 0.25(C_{BX}-3))$	0,1
ИСМ-РНЗ 1.0 ³⁾	$M\Gamma/M^3$	От 0 до 10	От 0 до 2	±0,4	0,1
	N11 / N1	ОТОДОТО	Св. 2 до 10	$\pm (0.4 + 0.2(C_{BX}-2))$	0,1
ИСМ-PID 1.0 ⁴⁾	$M\Gamma/M^3$	От 0 до 20	От 0 до 20	\pm (0,5+0,2C _{BX})	0,1
ИСМ-PID 2.0 ⁵⁾	$M\Gamma/M^3$	От 0 до 200	От 0 до 200	\pm (5+0,2C _{BX})	1
ИСМ-PID 3.0 ⁶⁾	$M\Gamma/M^3$	От 0 до 2000	От 0 до 2000	\pm (10+0,2C _{BX})	1

Примечания:

- 1) градуировка ИП с установленной ИСМ-СпНт-tk может проводиться индивидуально по следующим компонентам: метан, пропан, бутан, гексан, бензол. ИП с установленной ИСМ-Стнт-tk с градуировкой на метан, могут применяться для сигнализации о наличии горючих газов и паров и их смеси в воздухе в диапазоне сигнальных концентраций (5 50) %НКПР при установке порога срабатывания по уровню "Порог 2" равным 12 %НКПР (перечень контролируемых компонентов указан в приложении к паспорту);
- ²⁾ градуировка ИП с установленной ИСМ-СпНт-оа может проводиться индивидуально по следующим компонентам: метан, пропан, бутан, гексан. ИП с установленной ИСМ-СпНт-оа с градуировкой на гексан, могут применяться для сигнализации о наличии горючих газов и паров и их смеси (пропана, бутана, пентана гексана) в воздухе в диапазоне сигнальных концентраций (5 25) %НКПР при установке порога срабатывания по уровню "Порог 2" равным 20 %НКПР.
- $^{3)}-$ не применяется для контроля ПДК в воздухе рабочей зоны, только для аварийных ситуаций;
- ⁴⁾ градуировка ИП с установленной ИСМ-РІD 1.0 может проводиться индивидуально по следующим компонентам: винилхлорид, метилмеркаптан, этилмеркаптан, фенол, сероуглерод;
- ⁵⁾ градуировка ИП с установленной ИСМ-PID 2.0 может проводиться индивидуально по следующим компонентам: изобутилен, бензол, бутанол, о-ксилол;
- 6) градуировка ИП с установленной ИСМ-PID 3.0 может проводиться индивидуально по следующим компонентам: толуол, гексан, этанол.
- Свх значение содержания определяемого компонента на входе ИП, объемная доля, %, массовая концентрация, мг/м 3 , довзрывоопасная концентрация, % НКПР.
- 2) Пределы допускаемой вариации выходного сигнала ИП равны 0,5 в долях от пределов допускаемой основной погрешности.
- 3) При выпуске на ИП должны быть установлены пороги срабатывания сигнализации, значения которых приведены в таблице 4.

Таблица 4 – Пороги срабатывания сигнализации, установленные в ИП

Таблица 4 – Пороги сра Наименование уста-	Единица		ановленные в и ога* срабаты-		гановки поро-
новленной ИСМ	физической	- _ -			ния сигнали-
	величины	навливаемого при выпуске		зации	
		«ПОРОГ 1»	«ПОРОГ 2»	«ПОРОГ 1»	«ПОРОГ 2»
ИСМ-CnHm-tk		10	20	10 - 20	20 - 45
(по метану)					
ИСМ-CnHm-tk		7	12	-	-
(для суммарных угле-	% НКПР				
водородов)	1	1.0	20	10.20	20.00
ИСМ-СпНт-оа		10	20	10 - 20	20 - 90
(по метану, бутану, пропану, гексану)					
ИСМ-О2		23,0 (на по-	19 (на при-		
HCW 02	объемная	вышение)	нижение)	21-30	10-21
ИСМ-Н2	доля, %	0,4	0,8	0,4-1,0	1,0 – 1,8
ИСМ-СО2		1,2	4,5	0,3-2,5	2,5-4,8
ИСМ-СО 1.0		20	90	10-50	50-90
ИСМ-СО 2.0	=	200	600	100-500	500-900
ИСМ-Cl2 1.0		1	5	0,5-2,5	2,5-5
ИСМ-Cl2 2.0		5	20	5-25	25-45
ИСМ-Cl2 3.0	$M\Gamma/M^3$	3	10	2,5-15	15-27
ИСМ-NH3 1.0		20	60	10-50	50-90
ИСМ-NH3 2.0		200	500	160-400	400-1800
ИСМ-NH3 3.0	=	60	500	40-300	300-550
ИСМ-NH3 4.0		20	100	10-110	110-190
ИСМ-H2S 1.0		3	10	1,5-10	10-18
ИСМ-H2S 2.0	-	10	20	5-25	25-45
ИСМ-НСІ 1.0		5	9	3-6	6-9
ИСМ-NO2 1.0	. 3	5	15	2-10	10-18
ИСМ-NO2 2.0	$M\Gamma/M^3$	5	25	4-25	25-45
ИСМ-SO2 1.0		10	30	4-15	15-30
ИСМ-SO2 2.0		30	90	10-50	50-90
ИСМ-COCL2 1.0	1	1,5	4,5	0,6-2,5	2,5-4,7
ИСМ-НСN 1.0	1	3	10	1,5-8	8-14
ИСМ- PH3 1.0	MΓ/M ³	2	5	1-5	5-9
ИСМ-PID 1.0	MΓ/M ³	5	15	2-10	10-18
(по винилхлориду)	1411 / 141				
ИСМ-PID 1.0 (по метилмеркаптану)	$M\Gamma/M^3$	3	10	2-11	11-18
ИСМ-РІD 1.0	2	3	10	2-11	11-18
(по этилмеркаптану)	$M\Gamma/M^3$	3		2 11	11 10
ИСМ-PID 1.0	мг/м ³	3	10	2-11	11-18
(по фенолу)	1711 / 171				

Наименование уста-	Единица	Значение порога* срабаты-		Диапазон установки поро-	
новленной ИСМ	физической	вания сигнал	-	га срабатывания сигнали-	
	величины	навливаемого	при выпуске	зации	
		«ПОРОГ 1»	«ПОРОГ 2»	«ПОРОГ 1»	«ПОРОГ 2»
ИСМ-PID 1.0	MГ/M ³	10	15	2-11	11-18
(по сероуглероду)	M17M				
ИСM-PID 2.0	мг/м ³	100	150	20 - 110	110-190
(по изобутилену)	MI / MI				
ИСM-PID 2.0	мг/м ³	15	45	10 - 40	40-190
(по бензолу)	MII / MI				
ИСM-PID 2.0	мг/м ³	30	90	20-80	80-190
(по бутанолу)	MII / MI				
ИСM-PID 2.0	$M\Gamma/M^3$	50	150	20 - 100	100 - 190
(по о-ксилолу)	MII / MI				
ИСM-PID 3.0	$M\Gamma/M^3$	150	450	50-400	400-1800
(по толуолу)	MII / MI				
ИСМ-PID 3.0	ML/M3	300	900	100-800	800-1800
(по гексану)	W11 / M1				
ИСM-PID 3.0	$M\Gamma/M^3$	1000	1500	400-1000	1000-1800
(по этанолу)	M11 / M1				

^{*)} По требованию Заказчика могут быть установлены другие значения порогов срабатывания сигнализации, но в пределах диапазона установки порогов срабатывания сигнализации.

4) Пределы допускаемой дополнительной погрешности ИП при изменении температуры окружающей и контролируемой сред в рабочих условиях эксплуатации от температуры, при которой определялась основная погрешность, указаны в таблице 5.

Таблица 5 - Пределы допускаемой дополнительной погрешности ИП при изменении темпера-

туры окружающей и контролируемой сред

Наименование установленной ИСМ	Пределы допускаемой дополнительной погрешности
	от изменения температуры в долях от пределов
	допускаемой основной абсолютной погрешности
ИСМ-CnHm-tk	1
ИСМ-CnHm-oa	1,7
ИСМ-О2	0,2 на каждые 10°C
ИСМ-СО2	0,5
ИСМ- (CO 1.0, CO 2.0)	
ИСМ- (Cl 1.0, Cl 2.0, Cl 3.0)	
ИСМ – (NH3 1.0 - NH3 4.0)	
ИСМ-(H2S1.0, H2S2.0)	
ИСМ-HCl 1.0	
ИСМ-(NO2 1.0, NO2 2.0)	0,4 на каждые 10°C
ИСМ -(SO2 1.0, SO2 2.0)	
ИСM-COCL2 1.0	
ИСМ-НСN 1.0	
ИСМ-РНЗ 1.0	
ИСМ-Н2	
ИСМ-PID 1.0	
ИСМ-PID 2.0	0,4 на каждые 10°C
ИСМ-PID 3.0	

5) Пределы допускаемой дополнительной погрешности ИП от изменения атмосферного давления в рабочих условиях эксплуатации от номинального значения давления 100 кПа указаны в таблице 6.

Таблица 6 - Пределы допускаемой дополнительной погрешности ИП от изменения атмосферного давления

Наименование установленной	Пределы допускаемой дополнительной погрешности
ИСМ	от изменения атмосферного давления в долях от
	пределов допускаемой основной абсолютной погрешности
ИСМ-CnHm-tk	1
ИСМ-CnHm-oa	1
ИСМ-О2	0,2 на каждые 10 кПа
ИСМ-СО2	1
ИСМ-(CO 1.0, CO2.0)	0,2 на каждые 3,3 кПа
ИСМ – (Cl2 1.0, Cl2 2.0, Cl2 3.0)	
ИСМ- (NH3 1.0 - NH3 4.0)	
ИСМ- (H2S1.0, H2S2.0)	
ИСМ-HCl 1.0	
ИСМ- (NO2 1.0, NO2 2.0)	0,2 на каждые 3,3 кПа
ИСМ - (SO2 1.0, SO2 2.0)	0,2 на каждые 3,3 кна
ИСM-COCL2 1.0	
ИСМ-HCN 1.0	
ИСМ-РНЗ 1.0	
ИСМ-Н2	
ИСM-PID 1.0	
ИСM-PID 2.0	1
ИСМ-PID 3.0	

6) Пределы допускаемой дополнительной погрешности при изменении относительной влажности в рабочих условиях эксплуатации от номинального значения относительной. влажности 65% при температуре 25°C должны соответствовать значениям, указанным в таблице 7.

Таблица 7 - Пределы допускаемой дополнительной погрешности ИП при изменении относительной влажности

Наименование установленной	Пределы допускаемой дополнительной погрешности от из-
ИСМ	менения относительной влажности в долях от пределов до-
	пускаемой основной абсолютной погрешности
ИСМ-CnHm-tk	1,4
ИСМ-CnHm-oa	1
ИСМ-О2	0,2 на каждые 10 %
ИСМ-СО2	1
ИСМ-(CO 1.0, CO2.0)	
ИСМ – (Cl 1.0, Cl 2.0, Cl 3.0)	0,2 на каждые 10 %
ИСМ- (NH3 1.0 - NH3 4.0)	0,2 на каждые 10 70
ИСМ- (H2S1.0, H2S2.0)	
ИСМ-НС1 1.0	1 на каждые 10 %
ИСМ- (NO2 1.0, NO2 2.0)	0,2 на каждые 10 %
ИСМ - (SO2 1.0, SO2 2.0)	
ИСM-COCL2 1.0	0,5 на каждые 10 %
ИСМ-НСN 1.0	0,5 на каждые 10 %

Наименование установленной	Пределы допускаемой дополнительной погрешности от из-		
ИСМ	менения относительной влажности в долях от пределов до-		
	пускаемой основной абсолютной погрешности		
ИСМ-РНЗ 1.0	0.5 vo reovert to 10.0/		
ИСМ-Н2	— 0,5 на каждые 10 %		
ИСM-PID 1.0			
ИСМ-PID 2.0	0,1		
ИСМ-PID 3.0			

7) Пределы допускаемой суммарной дополнительной погрешности от воздействия неизмеряемых компонентов, содержания которых приведены в таблице 8, равны 1,0 в долях основной абсолютной погрешности в начальной точке диапазона измерений.

Таблица 8 - Пределы допускаемой суммарной дополнительной погрешности от воздействия не измеряемых компонентов

Наименование	Содержание не измеряемых компонентов								
установленной	NH ₃ ,	CO,	H_2S ,	Cl ₂ ,	H_2	NO,	NO ₂ ,	SO ₂ ,	CH ₄ ,
ИСМ	$M\Gamma/M^3$	мг/м ³	$M\Gamma/M^3$	Cl_2 , $M\Gamma/M^3$		$M\Gamma/M^3$	$M\Gamma/M^3$	$M\Gamma/M^3$	%об
ИСМ-NH3 1.0	-	500	3	1	2%(об.д.)	5	20	5	4,4
ИСМ-NH3 2.0	-	1000	50	1	2%(об.д.)	100	400	20	4,4
ИСМ-NH3 3.0	-	500	10	5	2%(об.д.)	10	100	10	4,4
ИСМ-NH3 4.0	-	1000	20	5	2%(об.д.)	30	60	30	4,4
ИСМ-СО 1.0	1000	-	10	5	25 млн ⁻¹	100	100	10	4,4
ИСМ-СО 2.0	1000	-	50	30	120 млн ⁻¹	300	300	50	4,4
ИСМ-H2S 1.0	60	500	-	3	500 млн ⁻¹	200	100	3	4,4
ИСМ-H2S 2.0	180	1000	-	10	>500 млн ⁻¹	500	300	6	4,4
ИСМ-С1 1.0	5	100	2,5	-	0,4% (об.д.)	2	0,5	5	4,4
ИСМ-С1 2.0	10	500	10	-	0,4% (об.д.)	20	5	10	4,4
ИСМ-С1 3.0	6	300	6	-	0,4% (об.д.)	12	3	6	4,4
ИСМ-Н2	100	500	20	1		100	100	100	4,4
ИСМ-NO2 1.0	30	100	5	1	1%(об.д.)	100	-	5	4,4
ИСМ-NO2 2.0	100	300	15	3	1%(об.д.)	300	-	15	4.4
ИСМ-О2	ı	-	-	1	1%(об.д.)	-	-	-	1,0
ИСM-SO2 1.0	60	100	3	1	0,4%(об.д.)	200	100	-	4,4
ИCM-SO2 2.0	180	300	6	1	0,4%(об.д.)	500	300	-	4.4
ИСМ-HCN 1.0	10	100	3	80	0,4% (об.д.)	100	8	3	4,4
ИСM-COCl2 1.0	1,0	60	0,05	0,5	0,4% (об.д.)	0,5	50	0,1	4,4
ИСМ-HCl 1.0	10	60	3	3	0,4% (об.д.)	2	1	1	4,4
ИСМ-РНЗ 1.0	20	100	1,0	1,0	0,4% (об.д.)	0,5	1,0	2,0	4,4
ИСМ-CnHm-tk	1500	100	(1)	(1)	0,05% (об.д.)	50	50	(1)	-
ИСМ-СпНт-oa	1500	100	50	50	1% (об.д.)	500	400	100	-
ИСМ-СО2	1500	100	50	50	1% (об.д.)	500	400	100	2,2
ИСМ-PID 1.0	1,0	- (2)	0,5	- (2)	- (2)	1,5	3,0	- (2)	- (2)
ИСМ-PID 2.0	15	- (2)	10	- (2)	_ (2)	20	50	- (2)	- (2)
ИСM-PID 3.0	120	- (2)	8	- (2)	- (2)	15	40	- (2)	- (2)

Примечание:

- 1) Чувствительность ИСМ необратимо уменьшается до 20% от начальной при воздействии в течение 8 ч: $[H_2S]=10 \text{ мг/м}^3$; $[SO_2]=20 \text{ мг/м}^3$; $[CL_2]=1 \text{ мг/м}^3$;
- 2) ИСМ-PID 1.0, ИСМ-PID 2.0, ИСМ-PID 3.0 не обладают чувствительностью к перечисленным газам, т.к. значение потенциала ионизации этих газов больше 10,6 эВ.
- 8) Интервал времени с момента включения до выхода в режим измерений (время прогрева), мин, не более
- 9) Время установления выходного сигнала $T_{0,9}$ без учета транспортного запаздывания, указано в таблице 9.

Таблица 9 - Время установления выходного сигнала

Наименование установленной ИСМ	Время установления выходного сигнала
	$T_{0,9}, c$
ИСМ-CnHm-tk	15
ИСМ-СпНт-оа	30
ИСМ-О2	
ИСМ-СО2	
ИСМ-(CO 1.0, CO2.0)	
ИСМ – (Cl2 1.0, Cl2 2.0, Cl2 3.0)	45
ИСМ- (NH3 1.0 - NH3 4.0)	
ИСМ- (H2S1.0, H2S2.0)	
ИСМ-HCl 1.0	120
ИСМ- (NO2 1.0, NO2 2.0)	45
ИСМ - (SO2 1.0, SO2 2.0)	45
ИСM-COCL2 1.0	120
ИСМ-HCN 1.0	60
ИСМ-РНЗ 1.0	00
ИСМ-Н2	45
ИСМ-PID 1.0	
ИСМ-PID 2.0	30
ИСМ-PID 3.0	

- 10) Интервал времени работы ИП без корректировки показаний, месяцев, не более
- 11) Параметры электрического питания ИП представлены в таблице 10

6

Таблица 10 – Параметры электрического питания

Исполнение ИП	Диапазон напряжения	Ток потребления, не	Тип подключения
	питания (Ипит), В	более, мА	
A200-A221	12 – 24	25 (при Uпит=12В)	Двухпроводное
		25 (при Uпит=24 В)	
A300 - A320, A325	10 – 24	35 (при Uпит=10 В)	Трехпроводное
		35 (при Uпит=24В)	
A324	10 – 24	80 (при Uпит= 10 В)	Трехпроводное
		40 (при Uпит= 24В)	
A326	10 - 24	25 (при Uпит= 10 В)	Трехпроводное
		20 (при Uпит= 24В)	
A327-A329	10 - 24	40 (при Uпит= 10 В)	Трехпроводное
		20 (при Uпит= 24В)	
A330	10 - 24	80 (при Uпит= 10 В)	Трехпроводное
		40 (при Uпит= 24В)	
B300- B320, B325	10 - 24	40 (при Uпит= 10В)	Трёхпроводное
		30 (при Uпит= 24В)	
B324	10 - 24	60 (при Uпит= 10В)	Трёхпроводное
		40 (при Uпит= 24В)	
B326	10 - 24	30 (при Uпит= 10В)	Трёхпроводное
		20 (при Uпит= 24В)	
B327-B329	10 - 24	40 (при Uпит= 10В)	Трёхпроводное
		30 (при Uпит= 24В)	
B330	10 - 24	80 (при Uпит= 10В)	Трёхпроводное
		50 (при Uпит= 24В)	
C300- C320, C325	10 - 24	40 (при Uпит= 10В)	Трёхпроводное
		30 (при Uпит= 24В)	
C324	10 - 24	60 (при Uпит= 10В)	Трёхпроводное
		40 (при Uпит= 24В)	
C326	10 – 24	30 (при Uпит= 10В)	Трёхпроводное
		20 (при Uпит= 24В)	
C327-C329	10 – 24	40 (при Uпит= 10В)	Трёхпроводное
		30 (при Uпит= 24В)	
C330	10 – 24	80 (при Uпит= 10В)	Трёхпроводное
		50 (при Uпит= 24В)	

12) Габаритные размеры, мм, не более	
ИП исполнений А200 А221, А300 А330	
- длина	150
- ширина	130
- высота	90
ИП исполнения В300В330	
- длина	150
- ширина	85
- высота	95
ИП исполнения С300С330	
- длина	150
- ширина	85
- высота	95
13) Масса, кг, не более	0,75

14) Средняя наработка на отказ в условиях эксплуатации	
(с учетом технического обслуживания), ч	40 000
15) Средний срок службы сенсоров, лет:	
ЭХ (кроме кислорода)	1
ЭХ (кислород)	2
ТК (горючие газы и пары)	1
ОА (горючие газы и пары, диоксид углерода)	5
PID	5
Рабочие условия эксплуатации	
Диапазон атмосферного давления, кПа	от 80 до 120
Диапазоны температуры и относительной влажности	
окружающей и анализируемой сред	см. таблицу 11

Таблица 11 - Диапазоны окружающей и анализируемой сред температуры относительной влажности И

иой сред	
Диапазон температур,	Диапазон относительной влажно-
°C	сти, % при температуре 25°C
От минус 40 до плюс 45	15-90 (без конденсации)
От минус 40 до плюс 45	20-98 (без конденсации)
От минус 40 до плюс 45	20-90 (без конденсации)
От минус 30 до плюс 45	15-90 (без конденсации)
От минус 30 до плюс 45	5-95 (без конденсации)
От минус 40 до плюс 45	15-90 (без конденсации)
От минус 40 до плюс 45	20-98 (без конденсации)
От минус 40 до плюс 45	20-90 (без конденсации)
От минус 30 до плюс 45	15-90 (без конденсации)
От минус 30 до плюс 45	5-95 (без конденсации)
От минус 40 до плюс 45	5-98 (без конденсации)
От минус 40 до плюс 45	0-98 (без конденсации)
От минус 30 до плюс 45	0-90 (без конденсации)
От минус 40 до плюс 45	0-95 (без конденсации)
От минус 40 до плюс 45	15-90 (без конденсации)
От минус 40 до плюс 45	20-98 (без конденсации)
От минус 40 до плюс 45	20-90 (без конденсации)
От минус 30 до плюс 45	15-90 (без конденсации)
От минус 30 до плюс 45	5-95 (без конденсации)
От минус 40 до плюс 45	5-98 (без конденсации)
От минус 40 до плюс 45	0-98 (без конденсации)
От минус 30 до плюс 45	0-90 (без конденсации)
От минус 40 до плюс 45	0-95 (без конденсации)
	Диапазон температур,

Знак утверждения типа

наносится типографским способом на титульный лист паспорта и на ИП в виде наклейки.

Комплектность средства измерений

Таблица 12 – Комплектность ИП исполнений: A200 ... A221, A300 ... A330

Обозначение	Наименование	Количество
EKPM.413411.001-xx	Преобразователь измерительный	по заказу, шт.
EKPM.413411.007-xx		по заказу, шт.
ЕКРМ.413411.001-ххПС	Паспорт	1 экз. на ИП
ЕКРМ.413411.007-ххПС		1 экз. на ИП
ЕКРМ.413422.003-ххПС	Паспорт	1 экз на ИСМ
ЕКРМ.413422.004-ххПС		1 экз. на ИСМ
ЕКРМ.413422.005ПС		1 экз. на ИСМ
ЕКРМ.413422.006ПС		1 экз на ИСМ
ЕКРМ.413422.007-ххПС		1 экз на ИСМ
ЕКРМ.413422.008ПС		1 экз на ИСМ
ЕКРМ.413216.001ПС		1 экз на ИСМ
	Крепёж преобразователя измери-	1 компл. на ИП (по заказу)
	тельного	
	Упаковка	1 шт.
МП-242-1587-2013	Методика поверки	1 экз. на партию

Таблица 13 – Комплектность ИП исполнений: В300 ...В330, С300 ... С330

Обозначение	Наименование	Количество
EKPM.413411.004-xx	Преобразователь измерительный	по заказу
EKPM.413411.008-xx		по заказу
ЕКРМ.413411.004-ххПС	Паспорт	1 экз. на ИП
ЕКРМ.413411.008-ххПС		1 экз. на ИП
ЕКРМ.413422.003-ххПС	Паспорт	1 экз. на ИСМ
ЕКРМ.413422.004-ххПС		1 экз. на ИСМ
ЕКРМ.413422.005ПС		1 экз. на ИСМ
ЕКРМ.413422.006ПС		1 экз. на ИСМ
ЕКРМ.413422.007-ххПС		1 экз. на ИСМ
ЕКРМ.413422.008ПС		
ЕКРМ.413216.001ПС		1 экз. на ИСМ
	Крепёж преобразователя измери-	1 компл. на ИП (по заказу)
	тельного	
	Упаковка	1 шт.
МП-242-1587-2013	Методика поверки	1 экз. на партию

Поверка

осуществляется по документу МП-242-1587-2013 "Преобразователи измерительные с интеллектуальными сенсорными модулями серий A200, A300, B300 и C300. Методика поверки", утвержденному ГЦИ СИ ФГУП "ВНИИМ им. Д.И. Менделеева" «09» июля 2013 г.

Основные средства поверки:

- рабочий эталон 1-го разряда генератор газовых смесей ГГС по ШДЕК.418813.900 ТУ исполнение ГГС-Р или ГГС-Т в комплекте со стандартными образцами состава газовых смесей по ТУ 6-16-2956-92 в баллонах под давлением и источниками микропотока по ИБЯЛ. 418319.013 ТУ;
- установка газодинамическая ГДУ-34 по г $\mathbf{9}$.6434.00.00.000 ТУ, пределы допускаемой относительной погрешности \pm 10 %;

- установка высшей точности "УВТ-Ф" (регистрационный номер № 60-A-89) для получения Γ С РН3-воздух, предел допускаемой относительной погрешности \pm 5 %;
- рабочий эталон 1-го разряда генератор поверочных газовых смесей модульный ИНФАН по ЛШЮГ.413411.017 ТУ;
- стандартные образцы состава газовые смеси в баллонах под давлением по ТУ 6-16-2956-92;
 - парофазные источники газовых смесей по ТУ 4215-001-20810646-99;
 - азот газообразный особой чистоты сорт 1 по ГОСТ 9293-74 в баллонах под давлением;
- поверочный нулевой газ (ПНГ) воздух марки A, Б по ТУ 6-21-5-82 в баллонах под давлением.

Сведения о методиках (методах) измерений

Методика измерений приведена в документах: «Преобразователи измерительные с интеллектуальными сенсорными модулями серий A200. Паспорт» ЕКРМ.413411.001-хх ПС, «Преобразователи измерительные с интеллектуальными сенсорными модулями серий A300. Паспорт» ЕКРМ.413411.007-ххПС, «Преобразователи измерительные с интеллектуальными сенсорными модулями серий B300. Паспорт» ЕКРМ.413411.004-ххПС, «Преобразователи измерительные с интеллектуальными сенсорными модулями серий С300. Паспорт» ЕКРМ.413411.008-ххПС.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным с интеллектуальными сенсорными модулями серий A200, A300, B300 и C300

- 1 ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.
- 2 ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны.
- 3 ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.
- 4 ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Требования безопасности.
- 5 ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 6 ТУ 4215-023-47275141-13. Преобразователи измерительные с интеллектуальными сенсорными модулями «A200», «A300». Технические условия.
- 7 ТУ 4215-024-47275141-13. Преобразователи измерительные с интеллектуальными сенсорными модулями «В300», «С300». Технические условия.

Изготовитель

ООО НПФ "ИНКРАМ", Россия

ИНН 7717136914

Адрес: 109341, Россия, Москва, ул. Люблинская, д. 151, офис 222

Тел. (495) 346-92-52, 346-92-49

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» Адрес: 190005, Санкт-Петербург, Московский пр., 19

Тел. (812) 251-76-01, факс (812) 713-01-14 E-mail: <u>info@vniim.ru</u>, <u>http://www.vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испы-

таний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2015 г.